Code/utils/visualisation.py
2025-05-13 16:31:53 +02:00

181 lines
7.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import streamlit as st
import altair as alt
import numpy as np
from collections import Counter
import pandas as pd
from utils.translations import _
def afficher_graphique_altair(df):
ordre_personnalise = [
str(_("pages.visualisations.categories.assembly", "Assemblage")),
str(_("pages.visualisations.categories.manufacturing", "Fabrication")),
str(_("pages.visualisations.categories.processing", "Traitement")),
str(_("pages.visualisations.categories.extraction", "Extraction"))
]
categories = [cat for cat in ordre_personnalise if cat in df['categorie'].unique()]
for cat in categories:
st.markdown(f"### {str(cat)}")
df_cat = df[df['categorie'] == cat].copy()
coord_pairs = list(zip(df_cat['ihh_pays'].round(1), df_cat['ihh_acteurs'].round(1)))
counts = Counter(coord_pairs)
offset_x = []
offset_y = {}
seen = Counter()
for pair in coord_pairs:
rank = seen[pair]
seen[pair] += 1
if counts[pair] > 1:
angle = rank * 1.5
radius = 0.8 + 0.4 * rank
offset_x.append(radius * np.cos(angle))
offset_y[pair] = radius * np.sin(angle)
else:
offset_x.append(0)
offset_y[pair] = 0
df_cat['ihh_pays'] += offset_x
df_cat['ihh_acteurs'] += [offset_y[p] for p in coord_pairs]
df_cat['ihh_pays_text'] = df_cat['ihh_pays'] + 0.5
df_cat['ihh_acteurs_text'] = df_cat['ihh_acteurs'] + 0.5
base = alt.Chart(df_cat).encode(
x=alt.X('ihh_pays:Q', title=str(_("pages.visualisations.axis_titles.ihh_countries", "IHH Pays (%)"))),
y=alt.Y('ihh_acteurs:Q', title=str(_("pages.visualisations.axis_titles.ihh_actors", "IHH Acteurs (%)"))),
size=alt.Size('criticite_cat:Q', scale=alt.Scale(domain=[1, 2, 3], range=[50, 500, 1000]), legend=None),
color=alt.Color('criticite_cat:N', scale=alt.Scale(domain=[1, 2, 3], range=['darkgreen', 'orange', 'darkred']))
)
points = base.mark_circle(opacity=0.6)
lines = alt.Chart(df_cat).mark_rule(strokeWidth=0.5, color='gray').encode(
x='ihh_pays:Q', x2='ihh_pays_text:Q',
y='ihh_acteurs:Q', y2='ihh_acteurs_text:Q'
)
labels = alt.Chart(df_cat).mark_text(
align='left', dx=3, dy=-3, fontSize=8, font='Arial', angle=335
).encode(
x='ihh_pays_text:Q',
y='ihh_acteurs_text:Q',
text='nom:N'
)
hline_15 = alt.Chart(df_cat).mark_rule(strokeDash=[2,2], color='green').encode(y=alt.datum(15))
hline_25 = alt.Chart(df_cat).mark_rule(strokeDash=[2,2], color='red').encode(y=alt.datum(25))
vline_15 = alt.Chart(df_cat).mark_rule(strokeDash=[2,2], color='green').encode(x=alt.datum(15))
vline_25 = alt.Chart(df_cat).mark_rule(strokeDash=[2,2], color='red').encode(x=alt.datum(25))
chart = (points + lines + labels + hline_15 + hline_25 + vline_15 + vline_25).properties(
width=500,
height=400,
title=str(_("pages.visualisations.chart_titles.concentration_criticality", "Concentration et criticité {0}")).format(str(cat))
).interactive()
st.altair_chart(chart, use_container_width=True)
def creer_graphes(donnees):
if not donnees:
st.warning(str(_("pages.visualisations.no_data", "Aucune donnée à afficher.")))
return
try:
df = pd.DataFrame(donnees)
df['ivc_cat'] = df['ivc'].apply(lambda x: 1 if x <= 15 else (2 if x <= 30 else 3))
from collections import Counter
coord_pairs = list(zip(df['ihh_extraction'].round(1), df['ihh_reserves'].round(1)))
counts = Counter(coord_pairs)
offset_x, offset_y = [], {}
seen = Counter()
for pair in coord_pairs:
rank = seen[pair]
seen[pair] += 1
if counts[pair] > 1:
angle = rank * 1.5
radius = 0.8 + 0.4 * rank
offset_x.append(radius * np.cos(angle))
offset_y[pair] = radius * np.sin(angle)
else:
offset_x.append(0)
offset_y[pair] = 0
df['ihh_extraction'] += offset_x
df['ihh_reserves'] += [offset_y[p] for p in coord_pairs]
df['ihh_extraction_text'] = df['ihh_extraction'] + 0.5
df['ihh_reserves_text'] = df['ihh_reserves'] + 0.5
base = alt.Chart(df).encode(
x=alt.X('ihh_extraction:Q', title=str(_("pages.visualisations.axis_titles.ihh_extraction", "IHH Extraction (%)"))),
y=alt.Y('ihh_reserves:Q', title=str(_("pages.visualisations.axis_titles.ihh_reserves", "IHH Réserves (%)"))),
size=alt.Size('ivc_cat:Q', scale=alt.Scale(domain=[1, 2, 3], range=[50, 500, 1000]), legend=None),
color=alt.Color('ivc_cat:N', scale=alt.Scale(domain=[1, 2, 3], range=['darkgreen', 'orange', 'darkred'])),
tooltip=['nom:N', 'ivc:Q', 'ihh_extraction:Q', 'ihh_reserves:Q']
)
points = base.mark_circle(opacity=0.6)
lines = alt.Chart(df).mark_rule(strokeWidth=0.5, color='gray').encode(
x='ihh_extraction:Q', x2='ihh_extraction_text:Q',
y='ihh_reserves:Q', y2='ihh_reserves_text:Q'
)
labels = alt.Chart(df).mark_text(
align='left', dx=10, dy=-10, fontSize=10, font='Arial', angle=335
).encode(
x='ihh_extraction_text:Q',
y='ihh_reserves_text:Q',
text='nom:N'
)
hline_15 = alt.Chart(df).mark_rule(strokeDash=[2,2], color='green').encode(y=alt.datum(15))
hline_25 = alt.Chart(df).mark_rule(strokeDash=[2,2], color='red').encode(y=alt.datum(25))
vline_15 = alt.Chart(df).mark_rule(strokeDash=[2,2], color='green').encode(x=alt.datum(15))
vline_25 = alt.Chart(df).mark_rule(strokeDash=[2,2], color='red').encode(x=alt.datum(25))
chart = (points + lines + labels + hline_15 + hline_25 + vline_15 + vline_25).properties(
width=600,
height=500,
title=str(_("pages.visualisations.chart_titles.concentration_resources", "Concentration des ressources critiques vs vulnérabilité IVC"))
).interactive()
st.altair_chart(chart, use_container_width=True)
except Exception as e:
st.error(f"{str(_('errors.graph_creation_error', 'Erreur lors de la création du graphique :'))} {e}")
def lancer_visualisation_ihh_criticite(graph):
try:
import networkx as nx
from utils.graph_utils import recuperer_donnees
niveaux = nx.get_node_attributes(graph, "niveau")
noeuds = [n for n, v in niveaux.items() if v == "10" and "Reserves" not in n]
noeuds.sort()
df = recuperer_donnees(graph, noeuds)
if df.empty:
st.warning(str(_("pages.visualisations.no_data", "Aucune donnée à visualiser.")))
else:
afficher_graphique_altair(df)
except Exception as e:
st.error(f"{str(_('errors.ihh_criticality_error', 'Erreur dans la visualisation IHH vs Criticité :'))} {e}")
def lancer_visualisation_ihh_ivc(graph):
try:
from utils.graph_utils import recuperer_donnees_2
noeuds_niveau_2 = [
n for n, data in graph.nodes(data=True)
if data.get("niveau") == "2" and "ivc" in data
]
if not noeuds_niveau_2:
return
data = recuperer_donnees_2(graph, noeuds_niveau_2)
creer_graphes(data)
except Exception as e:
st.error(f"{str(_('errors.ihh_ivc_error', 'Erreur dans la visualisation IHH vs IVC :'))} {e}")