181 lines
7.6 KiB
Python
181 lines
7.6 KiB
Python
import streamlit as st
|
||
import altair as alt
|
||
import numpy as np
|
||
from collections import Counter
|
||
import pandas as pd
|
||
from utils.translations import _
|
||
|
||
|
||
def afficher_graphique_altair(df):
|
||
ordre_personnalise = [
|
||
str(_("pages.visualisations.categories.assembly", "Assemblage")),
|
||
str(_("pages.visualisations.categories.manufacturing", "Fabrication")),
|
||
str(_("pages.visualisations.categories.processing", "Traitement")),
|
||
str(_("pages.visualisations.categories.extraction", "Extraction"))
|
||
]
|
||
categories = [cat for cat in ordre_personnalise if cat in df['categorie'].unique()]
|
||
for cat in categories:
|
||
st.markdown(f"### {str(cat)}")
|
||
df_cat = df[df['categorie'] == cat].copy()
|
||
|
||
coord_pairs = list(zip(df_cat['ihh_pays'].round(1), df_cat['ihh_acteurs'].round(1)))
|
||
counts = Counter(coord_pairs)
|
||
|
||
offset_x = []
|
||
offset_y = {}
|
||
seen = Counter()
|
||
for pair in coord_pairs:
|
||
rank = seen[pair]
|
||
seen[pair] += 1
|
||
if counts[pair] > 1:
|
||
angle = rank * 1.5
|
||
radius = 0.8 + 0.4 * rank
|
||
offset_x.append(radius * np.cos(angle))
|
||
offset_y[pair] = radius * np.sin(angle)
|
||
else:
|
||
offset_x.append(0)
|
||
offset_y[pair] = 0
|
||
|
||
df_cat['ihh_pays'] += offset_x
|
||
df_cat['ihh_acteurs'] += [offset_y[p] for p in coord_pairs]
|
||
df_cat['ihh_pays_text'] = df_cat['ihh_pays'] + 0.5
|
||
df_cat['ihh_acteurs_text'] = df_cat['ihh_acteurs'] + 0.5
|
||
|
||
base = alt.Chart(df_cat).encode(
|
||
x=alt.X('ihh_pays:Q', title=str(_("pages.visualisations.axis_titles.ihh_countries", "IHH Pays (%)"))),
|
||
y=alt.Y('ihh_acteurs:Q', title=str(_("pages.visualisations.axis_titles.ihh_actors", "IHH Acteurs (%)"))),
|
||
size=alt.Size('criticite_cat:Q', scale=alt.Scale(domain=[1, 2, 3], range=[50, 500, 1000]), legend=None),
|
||
color=alt.Color('criticite_cat:N', scale=alt.Scale(domain=[1, 2, 3], range=['darkgreen', 'orange', 'darkred']))
|
||
)
|
||
|
||
points = base.mark_circle(opacity=0.6)
|
||
lines = alt.Chart(df_cat).mark_rule(strokeWidth=0.5, color='gray').encode(
|
||
x='ihh_pays:Q', x2='ihh_pays_text:Q',
|
||
y='ihh_acteurs:Q', y2='ihh_acteurs_text:Q'
|
||
)
|
||
|
||
labels = alt.Chart(df_cat).mark_text(
|
||
align='left', dx=3, dy=-3, fontSize=8, font='Arial', angle=335
|
||
).encode(
|
||
x='ihh_pays_text:Q',
|
||
y='ihh_acteurs_text:Q',
|
||
text='nom:N'
|
||
)
|
||
|
||
hline_15 = alt.Chart(df_cat).mark_rule(strokeDash=[2,2], color='green').encode(y=alt.datum(15))
|
||
hline_25 = alt.Chart(df_cat).mark_rule(strokeDash=[2,2], color='red').encode(y=alt.datum(25))
|
||
vline_15 = alt.Chart(df_cat).mark_rule(strokeDash=[2,2], color='green').encode(x=alt.datum(15))
|
||
vline_25 = alt.Chart(df_cat).mark_rule(strokeDash=[2,2], color='red').encode(x=alt.datum(25))
|
||
|
||
chart = (points + lines + labels + hline_15 + hline_25 + vline_15 + vline_25).properties(
|
||
width=500,
|
||
height=400,
|
||
title=str(_("pages.visualisations.chart_titles.concentration_criticality", "Concentration et criticité – {0}")).format(str(cat))
|
||
).interactive()
|
||
|
||
st.altair_chart(chart, use_container_width=True)
|
||
|
||
|
||
def creer_graphes(donnees):
|
||
if not donnees:
|
||
st.warning(str(_("pages.visualisations.no_data", "Aucune donnée à afficher.")))
|
||
return
|
||
|
||
try:
|
||
df = pd.DataFrame(donnees)
|
||
df['ivc_cat'] = df['ivc'].apply(lambda x: 1 if x <= 15 else (2 if x <= 30 else 3))
|
||
|
||
from collections import Counter
|
||
coord_pairs = list(zip(df['ihh_extraction'].round(1), df['ihh_reserves'].round(1)))
|
||
counts = Counter(coord_pairs)
|
||
|
||
offset_x, offset_y = [], {}
|
||
seen = Counter()
|
||
for pair in coord_pairs:
|
||
rank = seen[pair]
|
||
seen[pair] += 1
|
||
if counts[pair] > 1:
|
||
angle = rank * 1.5
|
||
radius = 0.8 + 0.4 * rank
|
||
offset_x.append(radius * np.cos(angle))
|
||
offset_y[pair] = radius * np.sin(angle)
|
||
else:
|
||
offset_x.append(0)
|
||
offset_y[pair] = 0
|
||
|
||
df['ihh_extraction'] += offset_x
|
||
df['ihh_reserves'] += [offset_y[p] for p in coord_pairs]
|
||
df['ihh_extraction_text'] = df['ihh_extraction'] + 0.5
|
||
df['ihh_reserves_text'] = df['ihh_reserves'] + 0.5
|
||
|
||
base = alt.Chart(df).encode(
|
||
x=alt.X('ihh_extraction:Q', title=str(_("pages.visualisations.axis_titles.ihh_extraction", "IHH Extraction (%)"))),
|
||
y=alt.Y('ihh_reserves:Q', title=str(_("pages.visualisations.axis_titles.ihh_reserves", "IHH Réserves (%)"))),
|
||
size=alt.Size('ivc_cat:Q', scale=alt.Scale(domain=[1, 2, 3], range=[50, 500, 1000]), legend=None),
|
||
color=alt.Color('ivc_cat:N', scale=alt.Scale(domain=[1, 2, 3], range=['darkgreen', 'orange', 'darkred'])),
|
||
tooltip=['nom:N', 'ivc:Q', 'ihh_extraction:Q', 'ihh_reserves:Q']
|
||
)
|
||
|
||
points = base.mark_circle(opacity=0.6)
|
||
lines = alt.Chart(df).mark_rule(strokeWidth=0.5, color='gray').encode(
|
||
x='ihh_extraction:Q', x2='ihh_extraction_text:Q',
|
||
y='ihh_reserves:Q', y2='ihh_reserves_text:Q'
|
||
)
|
||
|
||
labels = alt.Chart(df).mark_text(
|
||
align='left', dx=10, dy=-10, fontSize=10, font='Arial', angle=335
|
||
).encode(
|
||
x='ihh_extraction_text:Q',
|
||
y='ihh_reserves_text:Q',
|
||
text='nom:N'
|
||
)
|
||
|
||
hline_15 = alt.Chart(df).mark_rule(strokeDash=[2,2], color='green').encode(y=alt.datum(15))
|
||
hline_25 = alt.Chart(df).mark_rule(strokeDash=[2,2], color='red').encode(y=alt.datum(25))
|
||
vline_15 = alt.Chart(df).mark_rule(strokeDash=[2,2], color='green').encode(x=alt.datum(15))
|
||
vline_25 = alt.Chart(df).mark_rule(strokeDash=[2,2], color='red').encode(x=alt.datum(25))
|
||
|
||
chart = (points + lines + labels + hline_15 + hline_25 + vline_15 + vline_25).properties(
|
||
width=600,
|
||
height=500,
|
||
title=str(_("pages.visualisations.chart_titles.concentration_resources", "Concentration des ressources critiques vs vulnérabilité IVC"))
|
||
).interactive()
|
||
|
||
st.altair_chart(chart, use_container_width=True)
|
||
|
||
except Exception as e:
|
||
st.error(f"{str(_('errors.graph_creation_error', 'Erreur lors de la création du graphique :'))} {e}")
|
||
|
||
|
||
def lancer_visualisation_ihh_criticite(graph):
|
||
try:
|
||
import networkx as nx
|
||
from utils.graph_utils import recuperer_donnees
|
||
|
||
niveaux = nx.get_node_attributes(graph, "niveau")
|
||
noeuds = [n for n, v in niveaux.items() if v == "10" and "Reserves" not in n]
|
||
noeuds.sort()
|
||
|
||
df = recuperer_donnees(graph, noeuds)
|
||
if df.empty:
|
||
st.warning(str(_("pages.visualisations.no_data", "Aucune donnée à visualiser.")))
|
||
else:
|
||
afficher_graphique_altair(df)
|
||
except Exception as e:
|
||
st.error(f"{str(_('errors.ihh_criticality_error', 'Erreur dans la visualisation IHH vs Criticité :'))} {e}")
|
||
|
||
|
||
def lancer_visualisation_ihh_ivc(graph):
|
||
try:
|
||
from utils.graph_utils import recuperer_donnees_2
|
||
noeuds_niveau_2 = [
|
||
n for n, data in graph.nodes(data=True)
|
||
if data.get("niveau") == "2" and "ivc" in data
|
||
]
|
||
if not noeuds_niveau_2:
|
||
return
|
||
data = recuperer_donnees_2(graph, noeuds_niveau_2)
|
||
creer_graphes(data)
|
||
except Exception as e:
|
||
st.error(f"{str(_('errors.ihh_ivc_error', 'Erreur dans la visualisation IHH vs IVC :'))} {e}")
|