181 lines
7.1 KiB
Python
181 lines
7.1 KiB
Python
import streamlit as st
|
|
import altair as alt
|
|
import numpy as np
|
|
from collections import Counter
|
|
import pandas as pd
|
|
from utils.translations import _
|
|
|
|
|
|
def afficher_graphique_altair(df):
|
|
ordre_personnalise = [
|
|
str(_("pages.visualisations.categories.assembly")),
|
|
str(_("pages.visualisations.categories.manufacturing")),
|
|
str(_("pages.visualisations.categories.processing")),
|
|
str(_("pages.visualisations.categories.extraction"))
|
|
]
|
|
categories = [cat for cat in ordre_personnalise if cat in df['categorie'].unique()]
|
|
for cat in categories:
|
|
st.markdown(f"### {str(cat)}")
|
|
df_cat = df[df['categorie'] == cat].copy()
|
|
|
|
coord_pairs = list(zip(df_cat['ihh_pays'].round(1), df_cat['ihh_acteurs'].round(1)))
|
|
counts = Counter(coord_pairs)
|
|
|
|
offset_x = []
|
|
offset_y = {}
|
|
seen = Counter()
|
|
for pair in coord_pairs:
|
|
rank = seen[pair]
|
|
seen[pair] += 1
|
|
if counts[pair] > 1:
|
|
angle = rank * 1.5
|
|
radius = 0.8 + 0.4 * rank
|
|
offset_x.append(radius * np.cos(angle))
|
|
offset_y[pair] = radius * np.sin(angle)
|
|
else:
|
|
offset_x.append(0)
|
|
offset_y[pair] = 0
|
|
|
|
df_cat['ihh_pays'] += offset_x
|
|
df_cat['ihh_acteurs'] += [offset_y[p] for p in coord_pairs]
|
|
df_cat['ihh_pays_text'] = df_cat['ihh_pays'] + 0.5
|
|
df_cat['ihh_acteurs_text'] = df_cat['ihh_acteurs'] + 0.5
|
|
|
|
base = alt.Chart(df_cat).encode(
|
|
x=alt.X('ihh_pays:Q', title=str(_("pages.visualisations.axis_titles.ihh_countries"))),
|
|
y=alt.Y('ihh_acteurs:Q', title=str(_("pages.visualisations.axis_titles.ihh_actors"))),
|
|
size=alt.Size('ics_cat:Q', scale=alt.Scale(domain=[1, 2, 3], range=[50, 500, 1000]), legend=None),
|
|
color=alt.Color('ics_cat:N', scale=alt.Scale(domain=[1, 2, 3], range=['darkgreen', 'orange', 'darkred']))
|
|
)
|
|
|
|
points = base.mark_circle(opacity=0.6)
|
|
lines = alt.Chart(df_cat).mark_rule(strokeWidth=0.5, color='gray').encode(
|
|
x='ihh_pays:Q', x2='ihh_pays_text:Q',
|
|
y='ihh_acteurs:Q', y2='ihh_acteurs_text:Q'
|
|
)
|
|
|
|
labels = alt.Chart(df_cat).mark_text(
|
|
align='left', dx=3, dy=-3, fontSize=8, font='Arial', angle=335
|
|
).encode(
|
|
x='ihh_pays_text:Q',
|
|
y='ihh_acteurs_text:Q',
|
|
text='nom:N'
|
|
)
|
|
|
|
hline_15 = alt.Chart(df_cat).mark_rule(strokeDash=[2,2], color='green').encode(y=alt.datum(15))
|
|
hline_25 = alt.Chart(df_cat).mark_rule(strokeDash=[2,2], color='red').encode(y=alt.datum(25))
|
|
vline_15 = alt.Chart(df_cat).mark_rule(strokeDash=[2,2], color='green').encode(x=alt.datum(15))
|
|
vline_25 = alt.Chart(df_cat).mark_rule(strokeDash=[2,2], color='red').encode(x=alt.datum(25))
|
|
|
|
chart = (points + lines + labels + hline_15 + hline_25 + vline_15 + vline_25).properties(
|
|
width=500,
|
|
height=400,
|
|
title=str(_("pages.visualisations.chart_titles.concentration_criticality")).format(str(cat))
|
|
).interactive()
|
|
|
|
st.altair_chart(chart, use_container_width=True)
|
|
|
|
|
|
def creer_graphes(donnees):
|
|
if not donnees:
|
|
st.warning(str(_("pages.visualisations.no_data")))
|
|
return
|
|
|
|
try:
|
|
df = pd.DataFrame(donnees)
|
|
df['ivc_cat'] = df['ivc'].apply(lambda x: 1 if x <= 15 else (2 if x <= 30 else 3))
|
|
|
|
from collections import Counter
|
|
coord_pairs = list(zip(df['ihh_extraction'].round(1), df['ihh_reserves'].round(1)))
|
|
counts = Counter(coord_pairs)
|
|
|
|
offset_x, offset_y = [], {}
|
|
seen = Counter()
|
|
for pair in coord_pairs:
|
|
rank = seen[pair]
|
|
seen[pair] += 1
|
|
if counts[pair] > 1:
|
|
angle = rank * 1.5
|
|
radius = 0.8 + 0.4 * rank
|
|
offset_x.append(radius * np.cos(angle))
|
|
offset_y[pair] = radius * np.sin(angle)
|
|
else:
|
|
offset_x.append(0)
|
|
offset_y[pair] = 0
|
|
|
|
df['ihh_extraction'] += offset_x
|
|
df['ihh_reserves'] += [offset_y[p] for p in coord_pairs]
|
|
df['ihh_extraction_text'] = df['ihh_extraction'] + 0.5
|
|
df['ihh_reserves_text'] = df['ihh_reserves'] + 0.5
|
|
|
|
base = alt.Chart(df).encode(
|
|
x=alt.X('ihh_extraction:Q', title=str(_("pages.visualisations.axis_titles.ihh_extraction"))),
|
|
y=alt.Y('ihh_reserves:Q', title=str(_("pages.visualisations.axis_titles.ihh_reserves"))),
|
|
size=alt.Size('ivc_cat:Q', scale=alt.Scale(domain=[1, 2, 3], range=[50, 500, 1000]), legend=None),
|
|
color=alt.Color('ivc_cat:N', scale=alt.Scale(domain=[1, 2, 3], range=['darkgreen', 'orange', 'darkred'])),
|
|
tooltip=['nom:N', 'ivc:Q', 'ihh_extraction:Q', 'ihh_reserves:Q']
|
|
)
|
|
|
|
points = base.mark_circle(opacity=0.6)
|
|
lines = alt.Chart(df).mark_rule(strokeWidth=0.5, color='gray').encode(
|
|
x='ihh_extraction:Q', x2='ihh_extraction_text:Q',
|
|
y='ihh_reserves:Q', y2='ihh_reserves_text:Q'
|
|
)
|
|
|
|
labels = alt.Chart(df).mark_text(
|
|
align='left', dx=10, dy=-10, fontSize=10, font='Arial', angle=335
|
|
).encode(
|
|
x='ihh_extraction_text:Q',
|
|
y='ihh_reserves_text:Q',
|
|
text='nom:N'
|
|
)
|
|
|
|
hline_15 = alt.Chart(df).mark_rule(strokeDash=[2,2], color='green').encode(y=alt.datum(15))
|
|
hline_25 = alt.Chart(df).mark_rule(strokeDash=[2,2], color='red').encode(y=alt.datum(25))
|
|
vline_15 = alt.Chart(df).mark_rule(strokeDash=[2,2], color='green').encode(x=alt.datum(15))
|
|
vline_25 = alt.Chart(df).mark_rule(strokeDash=[2,2], color='red').encode(x=alt.datum(25))
|
|
|
|
chart = (points + lines + labels + hline_15 + hline_25 + vline_15 + vline_25).properties(
|
|
width=600,
|
|
height=500,
|
|
title=str(_("pages.visualisations.chart_titles.concentration_resources"))
|
|
).interactive()
|
|
|
|
st.altair_chart(chart, use_container_width=True)
|
|
|
|
except Exception as e:
|
|
st.error(f"{str(_('errors.graph_creation_error'))} {e}")
|
|
|
|
|
|
def lancer_visualisation_ihh_ics(graph):
|
|
try:
|
|
import networkx as nx
|
|
from utils.graph_utils import recuperer_donnees
|
|
|
|
niveaux = nx.get_node_attributes(graph, "niveau")
|
|
noeuds = [n for n, v in niveaux.items() if v == "10" and "Reserves" not in n]
|
|
noeuds.sort()
|
|
|
|
df = recuperer_donnees(graph, noeuds)
|
|
if df.empty:
|
|
st.warning(str(_("pages.visualisations.no_data")))
|
|
else:
|
|
afficher_graphique_altair(df)
|
|
except Exception as e:
|
|
st.error(f"{str(_('errors.ihh_criticality_error'))} {e}")
|
|
|
|
|
|
def lancer_visualisation_ihh_ivc(graph):
|
|
try:
|
|
from utils.graph_utils import recuperer_donnees_2
|
|
noeuds_niveau_2 = [
|
|
n for n, data in graph.nodes(data=True)
|
|
if data.get("niveau") == "2" and "ivc" in data
|
|
]
|
|
if not noeuds_niveau_2:
|
|
return
|
|
data = recuperer_donnees_2(graph, noeuds_niveau_2)
|
|
creer_graphes(data)
|
|
except Exception as e:
|
|
st.error(f"{str(_('errors.ihh_ivc_error'))} {e}")
|