# The default configuration file. # More information about configuration can be found in the documentation: https://docs.privategpt.dev/ # Syntax in `private_pgt/settings/settings.py` server: env_name: ${APP_ENV:prod} port: ${PORT:8001} cors: enabled: true allow_origins: ["*"] allow_methods: ["*"] allow_headers: ["*"] auth: enabled: false # python -c 'import base64; print("Basic " + base64.b64encode("secret:key".encode()).decode())' # 'secret' is the username and 'key' is the password for basic auth by default # If the auth is enabled, this value must be set in the "Authorization" header of the request. secret: "Basic c2VjcmV0OmtleQ==" #data: # local_ingestion: # enabled: ${LOCAL_INGESTION_ENABLED:false} # allow_ingest_from: ["*"] # local_data_folder: local_data/Corpus/private_gpt data: local_ingestion: enabled: true allow_ingest_from: ["*"] local_data_folder: local_data/private_gpt ui: enabled: true path: / # "RAG", "Search", "Basic", or "Summarize" default_mode: "RAG" default_chat_system_prompt: > Vous ne devez répondre aux questions qu'à partir des données du contexte. Si vous connaissez la réponse, mais qu'elle n'est pas basée sur le contexte, faites en suggestion et non une réponse. Annoncez le clairement. default_query_system_prompt: > Vous ne devez répondre aux questions qu'à partir des données du contexte. Si vous connaissez la réponse, mais qu'elle n'est pas basée sur le contexte, faites en suggestion et non une réponse. Annoncez le clairement. default_summarization_system_prompt: > Vous ne devez répondre aux questions qu'à partir des données du contexte. Si vous connaissez la réponse, mais qu'elle n'est pas basée sur le contexte, faites en suggestion et non une réponse. Annoncez le clairement. delete_file_button_enabled: true delete_all_files_button_enabled: true llm: mode: llamacpp prompt_style: "llama3" # Should be matching the selected model max_new_tokens: 512 context_window: 10000 # Select your tokenizer. Llama-index tokenizer is the default. # tokenizer: meta-llama/Meta-Llama-3.1-8B-Instruct temperature: 0.1 # The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual. (Default: 0.1) rag: similarity_top_k: 15 #This value controls how many "top" documents the RAG returns to use in the context. # similarity_value: 0.9 #This value is disabled by default. If you enable this settings, the RAG will only use articles that meet a certain percentage score. rerank: enabled: false model: cross-encoder/ms-marco-MiniLM-L-2-v2 top_n: 1 summarize: use_async: false clickhouse: host: localhost port: 8443 username: admin password: clickhouse database: embeddings llamacpp: llm_hf_repo_id: lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF llm_hf_model_file: Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf tfs_z: 2.0 # Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting top_k: 10 # Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) top_p: 0.3 # Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) repeat_penalty: 1.1 # Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) #embedding: # # Should be matching the value above in most cases # mode: huggingface # ingest_mode: simple # embed_dim: 768 # 768 is for nomic-ai/nomic-embed-text-v1.5 embedding: mode: ollama model: mxbai-embed-large ingest_mode: simple embed_dim: 1536 huggingface: embedding_hf_model_name: nomic-ai/nomic-embed-text-v1.5 access_token: ${HF_TOKEN:} # Warning: Enabling this option will allow the model to download and execute code from the internet. # Nomic AI requires this option to be enabled to use the model, be aware if you are using a different model. trust_remote_code: true nodestore: database: simple milvus: uri: local_data/private_gpt/milvus/milvus_local.db collection_name: milvus_db overwrite: false vectorstore: database: qdrant qdrant: path: local_data/private_gpt/qdrant postgres: host: localhost port: 5432 database: postgres user: postgres password: postgres schema_name: private_gpt sagemaker: llm_endpoint_name: huggingface-pytorch-tgi-inference-2023-09-25-19-53-32-140 embedding_endpoint_name: huggingface-pytorch-inference-2023-11-03-07-41-36-479 openai: api_key: ${OPENAI_API_KEY:} model: gpt-3.5-turbo embedding_api_key: ${OPENAI_API_KEY:} ollama: llm_model: qwen3:14b embedding_model: mxbai-embed-large api_base: http://localhost:11434 embedding_api_base: http://localhost:11434 # change if your embedding model runs on another ollama keep_alive: 5m request_timeout: 1200.0 autopull_models: true azopenai: api_key: ${AZ_OPENAI_API_KEY:} azure_endpoint: ${AZ_OPENAI_ENDPOINT:} embedding_deployment_name: ${AZ_OPENAI_EMBEDDING_DEPLOYMENT_NAME:} llm_deployment_name: ${AZ_OPENAI_LLM_DEPLOYMENT_NAME:} api_version: "2023-05-15" embedding_model: text-embedding-ada-002 llm_model: gpt-35-turbo gemini: api_key: ${GOOGLE_API_KEY:} model: models/gemini-pro embedding_model: models/embedding-001