Create rag_md.py
This commit is contained in:
parent
d8bc030a52
commit
d5fffdce14
91
rag_md.py
Normal file
91
rag_md.py
Normal file
@ -0,0 +1,91 @@
|
||||
import os
|
||||
import faiss
|
||||
import numpy as np
|
||||
import requests
|
||||
from sentence_transformers import SentenceTransformer
|
||||
import re
|
||||
|
||||
# 1. Charger les fichiers Markdown et enrichir le contexte
|
||||
def collect_markdown_files(root_dir):
|
||||
texts, sources, raw_contents = [], [], []
|
||||
for root, dirs, files in os.walk(root_dir):
|
||||
for f in files:
|
||||
if f.endswith(".md"):
|
||||
full_path = os.path.join(root, f)
|
||||
rel_path = os.path.relpath(full_path, root_dir)
|
||||
try:
|
||||
with open(full_path, "r", encoding="utf-8") as file:
|
||||
content = file.read().strip()
|
||||
if content:
|
||||
enriched = f"[Fichier : {rel_path}]\n\n{content}"
|
||||
texts.append(enriched)
|
||||
sources.append(full_path)
|
||||
raw_contents.append(content)
|
||||
except Exception as e:
|
||||
print(f"Erreur lecture {full_path}: {e}")
|
||||
return texts, sources, raw_contents
|
||||
|
||||
# 2. Initialisation
|
||||
ROOT_DIR = "mes_fiches"
|
||||
print("🔍 Chargement des fichiers markdown...")
|
||||
documents, paths, raw_contents = collect_markdown_files(ROOT_DIR)
|
||||
print(f"📄 {len(documents)} fichiers chargés.")
|
||||
|
||||
print("📦 Génération des embeddings...")
|
||||
model = SentenceTransformer("all-MiniLM-L6-v2")
|
||||
embeddings = model.encode(documents, show_progress_bar=True)
|
||||
|
||||
# 3. Indexation FAISS
|
||||
dim = embeddings.shape[1]
|
||||
index = faiss.IndexFlatL2(dim)
|
||||
index.add(np.array(embeddings))
|
||||
|
||||
# 4. Boucle de questions
|
||||
while True:
|
||||
query = input("\n🔎 Pose ta question : ").strip()
|
||||
if not query:
|
||||
break
|
||||
|
||||
print("\n🔗 Recherche vectorielle...")
|
||||
query_embedding = model.encode([query])
|
||||
_, faiss_indices = index.search(np.array(query_embedding), k=5)
|
||||
|
||||
vector_results = [(documents[i], paths[i]) for i in faiss_indices[0]]
|
||||
|
||||
print("🔍 Recherche par mot-clé...")
|
||||
keyword_hits = []
|
||||
keywords = re.findall(r'\w+', query.lower())
|
||||
for i, (path, content) in enumerate(zip(paths, raw_contents)):
|
||||
combined = f"{path.lower()} {content.lower()}"
|
||||
if all(kw in combined for kw in keywords):
|
||||
keyword_hits.append((documents[i], paths[i]))
|
||||
|
||||
# 5. Fusionner résultats (vector d'abord, puis keyword)
|
||||
all_results = vector_results + keyword_hits
|
||||
seen_paths = set()
|
||||
unique_results = []
|
||||
for doc, p in all_results:
|
||||
if p not in seen_paths:
|
||||
unique_results.append((doc, p))
|
||||
seen_paths.add(p)
|
||||
|
||||
top_contexts = [doc for doc, _ in unique_results[:3]]
|
||||
top_sources = [os.path.relpath(p, ROOT_DIR) for _, p in unique_results[:3]]
|
||||
contexte = "\n\n".join(top_contexts)
|
||||
fichiers_utilisés = "\n".join(f"- {src}" for src in top_sources)
|
||||
|
||||
# 6. Préparer le prompt
|
||||
prompt = (
|
||||
f"Contexte :\n{contexte}\n\n"
|
||||
f"Question : {query}\n"
|
||||
f"Réponds clairement et cite les éléments importants si besoin."
|
||||
)
|
||||
|
||||
print("\n🧠 Appel au modèle Ollama...\n")
|
||||
res = requests.post(
|
||||
"http://localhost:11434/api/generate",
|
||||
json={"model": "llama3", "prompt": prompt, "stream": False}
|
||||
)
|
||||
|
||||
print("📘 Fichiers utilisés :\n", fichiers_utilisés)
|
||||
print("\n🧠 Réponse :\n", res.json()["response"])
|
||||
Loading…
x
Reference in New Issue
Block a user